

SiC MOSFET N-channel 165A/1200V

Parameter	Value	Unit
BVpss	1200	V
RDS(ON),typ.(20V)	13	mΩ
V _{GS(TH)}	2.5 ~ 3.5	V
Eon	9	mJ
Eoff	2.1	mJ
ID (at TC=25℃)	165	Α

FEATURES

- High Speed Switching with Low Capacitance
- High Blocking Voltage with Low On-Resistance
- Easy to Parallel and Simple to Drive
- Avalanche Ruggedness
- Reduced Cooling Requirements

APPLICATIONS

- Solar Inverters
- Switch Mode Power Supplies
- High Voltage DC/DC Converters
- Battery Chargers
- Pulsed Power Applications

MAXIMUM RATED VALUES (at TJ = 25 °C, unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions
V _{DSmax}	Drain-Source Voltage	1200	V	$V_{GS} = 0 V$, $I_D = 1mA$
V _{GSmax}	Gate-Source Voltage	-10/+25	V	Absolute maximum values
V _{GSop}	Gate-Source Voltage	-5/+18	V	Recommended operational values
L	Continuous Drain Current 165		Α	V _{GS} = 18 V, Tc = 25°C
l _D	Continuous Diani Current	150	Α	V _{GS} = 18 V, Tc = 60°C
I _{D(pulse)}	Pulsed Drain Current	300	Α	Pulse width t _P limited by T _{jmax}
P _D	Power Dissipation	288	W	T _C =25°C, T _J = 175°C
T_{J},T_{stg}	Operating Junction and Storage Temperature	-40 to +175	ç	
T _L	Solder Temperature	260	Ç	1.6mm (0.063") from case for 10s

THERMAL CHARACTERISTICS

Symbol	Parameter	Min.	Тур.	Max.	Unit
ReJC	Thermal Resistance, Junction-to-Case			0.27	°C/W
Reja	Thermal Resistance, Junction-to-Ambient			26.8	C/VV

www.hypersemi.com.cn - 1 -

ELECTRICAL CHARACTERISTICS (at TJ = 25°C unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	1200	-	-	V	V _{GS} = 0 V, I _D = 1mA	
		2.5	3.0	3.5	V	$V_{DS} = V_{GS}$, $I_D = 10mA$	
$V_{\text{GS(th)}}$	Gate threshold Voltage	-	2.5	-	V	$V_{DS} = V_{GS}, I_{D} = 10 \text{mA}, T_{J} = 175 ^{\circ}\text{C}$	
I _{DSS}	Zero Gate Voltage Drain Current	-	-	50	μΑ	V _{DS} = 1200 V, V _{GS} = 0 V	
$I_{\rm GSS}$	Gate Source Leakage Current	-	-	200	nA	V _{GS} = 18 V, V _{DS} = 0 V	
_	Drain-Source	-	13	16		$V_{GS} = 18 \text{ V}, I_{D} = 100 \text{ A}$	
R _{DSON}	On-State Resistance	-	24	-	mΩ	$V_{GS} = 18 \text{ V}, I_{D} = 100 \text{A}, $ $T_{J} = 175 ^{\circ} \text{C}$	
a	Transconductance	-	58	-	S	V _{GS} = 20 V, I _D = 100A	
g_{fs}	Transconductance	-	55	-	3	V _{GS} = 20 V, I _D = 100A, T _J =175°C	
C_{iss}	Input Capacitance	-	7500	-		V _{DS} =800V,V _{GS} =0V, T _J =25°C,f=100kHz	
C _{oss}	Output Capacitance	-	284	-	pF		
C _{rss}	Reverse Capacitance	-	18	-]		
E _{oss}	C _{oss} Stored Energy	-	161	-	μJ		
E _{on}	Turn on Switching Energy	-	9000	-		V _{DS} = 800 V, V _{GS} = -5/+15 V,	
E _{off}	Turn off Switching Energy	-	2100	-	μJ	$I_D=150A, R_{g(ext)}=5\Omega, T_J=125^{\circ}C$	
t _{don}	Turn on delay time	-	31	-			
t _r	Rise time	-	47	-]	$V_{DS} = 800 \text{ V}, V_{GS} = -5/+15 \text{ V}$	
t _{doff}	Turn off delay time	-	83	-	ns	$I_D = 150A, R_{g(ext)} = 5\Omega, T_J = 125^{\circ}C$	
t _f	Fall time	-	76	-]		
R_{gint}	Internal Gate Resistance	-	2.5	-	Ω	V _{AC} =25mV, f= 1MHz	
Q_{gs}	Gate to Source Charge	-	70	-			
Q_{gd}	Gate to Drain Charge	-	92	-	nC	$V_{DS} = 800 \text{ V}, V_{GS} = -5/+18 \text{ V},$	
Q_g	Total Gate Charge	-	260	-]	I _D = 150A	

SOURCE-DRAIN BODY DIODE CHARACTERISTICS

Symbol	Parameter	Min	Тур.	Max.	Unit	Test Conditions	
IsD	Continuous Source Current			132	Α	V _{GS} = -5 V, Tc=25°C	
\/	Diada Fanyard\/altara		4.9		V	V _{GS} = -5 V, I _{SD} = 100 A	
VsD	/sp Diode Forward Voltage		4.5			V _{GS} = -5 V, I _{SD} = 100 A,T _J = 175°C	
t _{rr}	Reverse Recovery Time		67		ns	V_R = 800 V, V_{GS} = -5V/+15V, I_D = 150A, di/dt=2500A/μS, T_J = 125°C, R_G =5 Ω	
Qrr	Reverse Recovery Charge		1600		nC		
Irrm	Peak Reverse Recovery Current		36		Α		

www.hypersemi.com.cn - 2 -

TYPICAL CHARACTERISTICS CURVES

Figure 1. Output Characteristics TJ = -40 °C

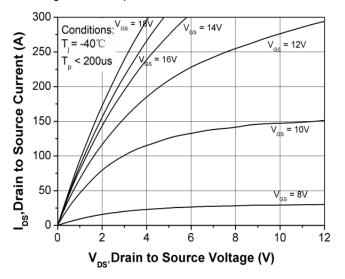


Figure 3. Output Characteristics TJ = 175°C

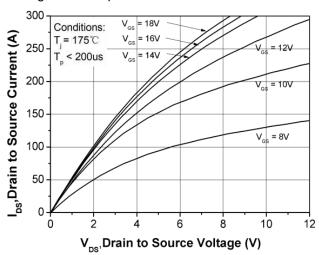


Figure 5. On-Resistance vs. Drain Current For Various Temperatures

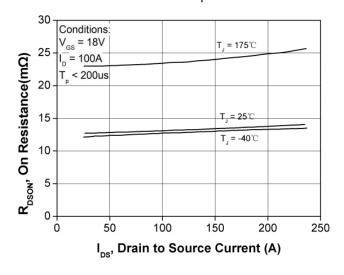


Figure 2. Output Characteristics TJ = 25 °C

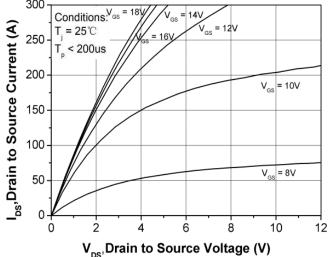


Figure 4. Normalized On-Resistance vs. Temperature

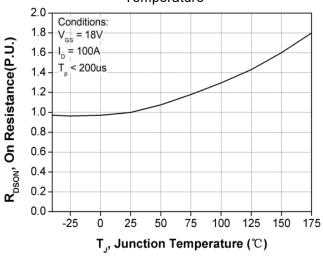
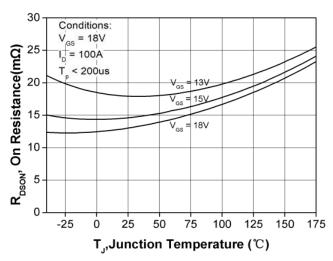



Figure 6. On-Resistance vs. Temperature For Various Gate Voltage

www.hypersemi.com.cn - 3 -

Figure 7. Transfer Characteristic for Various Junction Temperatures

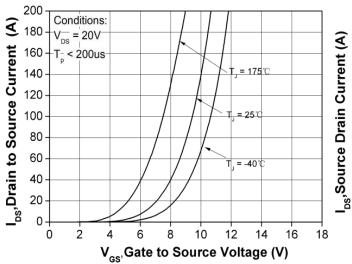


Figure 8. Body Diode Characteristic at TJ = -40°C

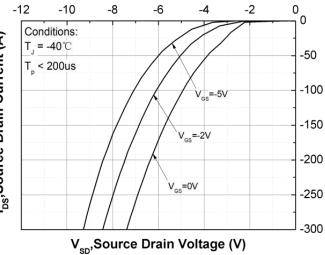
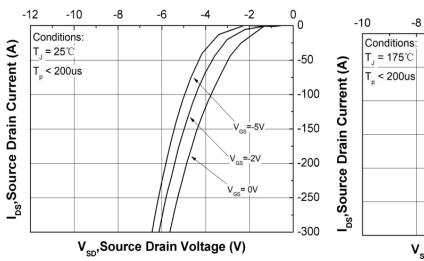
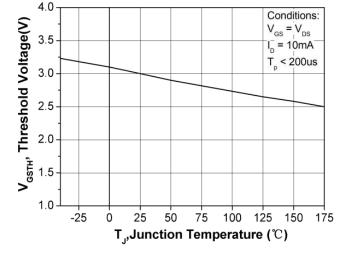
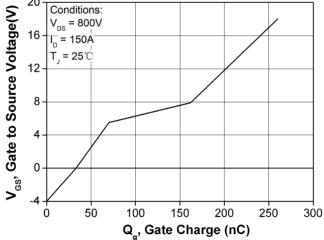



Figure 9. Body Diode Characteristic at TJ = 25 °C





0 -2 -6 -50 -100 -150 V_{gs}= 0V -200 -250 -300 V_{sp},Source Drain Voltage (V)

Figure 11. Threshold Voltage vs. Temperature

www.hypersemi.com.cn

Figure 13. 3rd Quadrant Characteristic at TJ = -40 °C

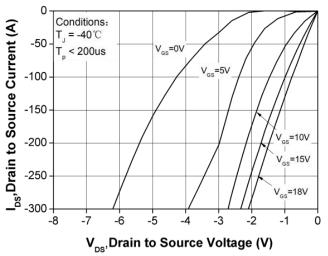


Figure 14. 3rd Quadrant Characteristic at TJ = 25 °C

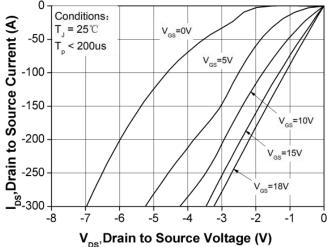


Figure 15. 3rd Quadrant Characteristic at TJ = 175°C

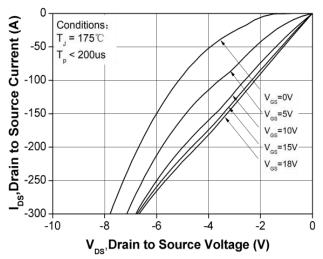


Figure 16. Output Capacitor Stored Energy

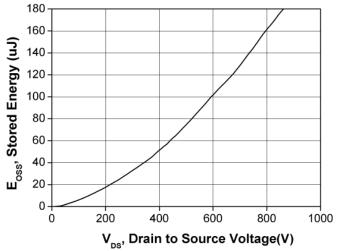


Figure 17. Capacitance vs. Drain-Source Voltage (0 - 200V)

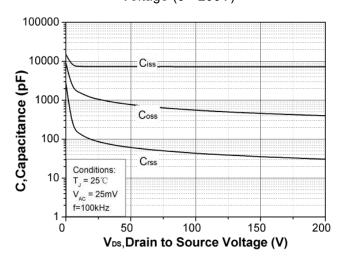
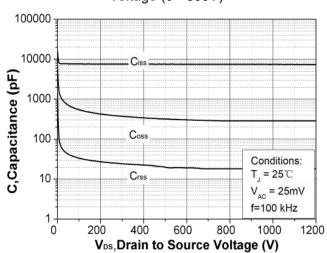



Figure 18. Capacitance vs. Drain-Source Voltage (0 - 800V)

- 5 www.hypersemi.com.cn

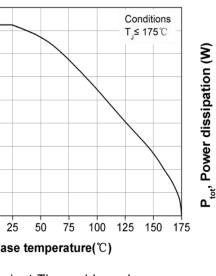
Figure 20. Maximum Power Dissipation Derating

vs.Case Temperature

Conditions

T, ≤ 175°C

125


150

175

Figure 19. Continuous Drain Current Derating vs. Case Temperature

Figure 21. Transient Thermal Impedance (Junction - Case)

300

250

200

150

100

50

n

-50

-25

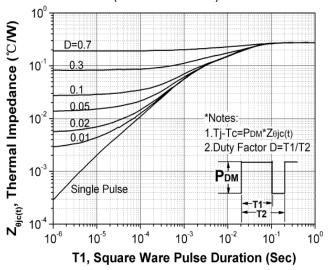


Figure 23. Clamped Inductive Switching Energy vs. Low Drain Current (VDD= 800V)

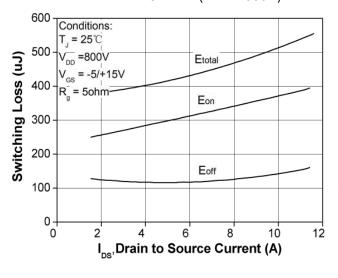


Figure 22. Safe Operating Area

50

T_c,Case temperature(°C)

75

100

25

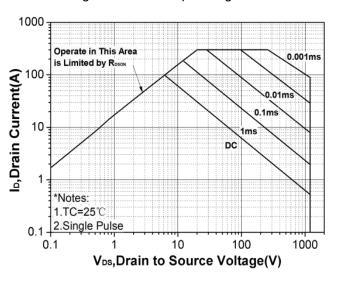
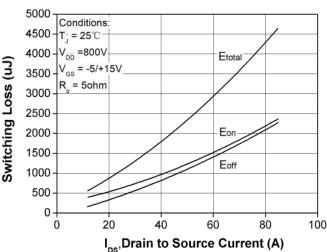



Figure 24. Clamped Inductive Switching Energy vs. High Drain Current (VDD= 800V)

- 6 www.hypersemi.com.cn

Figure 25. Clamped Inductive Switching Energy vs. RG(ext)

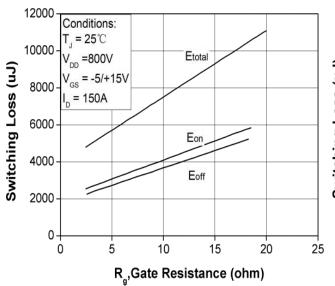


Figure 26. Clamped Inductive Switching Energy vs. Temperature



Figure 27. Switching Times vs. RG(ext)

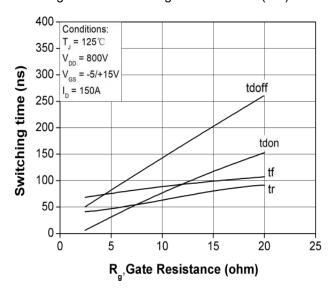
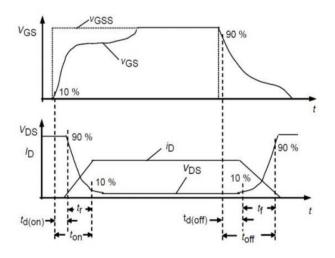
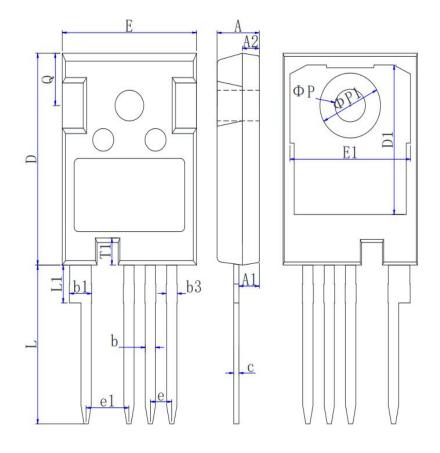



Figure 28. Switching Times Definition



PACKAGE OUTLINES

TO-247-4L

www.hypersemi.com.cn - 7 -

SYMBOL	ММ						
	MIN	NOM	MAX				
Α	4.80	5.00	5.20				
A 1	2.21	2.41	2.61				
A2	1.80	2.00	2.20				
b	1.06	1.21	1.36				
b1	2.33	2.63	2.93				
b3	1.07	1.30	1.60				
С	0.51	0.61	0.75				
D	23.30	23.45	23.60				
D1	16.25	16.55	16.85				
E	15.74	15.94	16.14				
E1	13.72	14.02	14.32				
T1	2.35	2.50	2.65				
е	2.54BSC						
e1	5.08BSC						
Q	5.49	5.79	6.09				
L	17.27	17.57	17.87				
L1	3.99	4.19	4.39				
ФР	3.40	3.60 3.80					
ФР1	7.19REF						

***Important Usage Information and Disclaimer

The specifications of Zhuhai Hypersemi Co., Ltd. products are not guarantees of product characteristics. They reflect typical performance expected in standard applications, which may vary with specific uses. Users must conduct prior testing for their applications and make necessary adjustments.

Users are responsible for the safety of applications utilizing our products and must implement adequate safety measures to prevent physical injury, fire, or other risks in case of product failure. It is the user's duty to ensure that application designs comply with all applicable laws and standards. Our products must not be used in any applications where a product failure could reasonably result in personal injury, unless specifically authorized in a signed document by Zhuhai Hypersemi Co., Ltd.

No representations or warranties are made regarding the accuracy or completeness of this information, including any claims of non-infringement of third-party intellectual property rights. Zhuhai Hypersemi Co., Ltd. assumes no liability for any applications or uses of its products and does not grant any licenses to its intellectual property rights or those of others. We also make no claims regarding non-infringement of third-party intellectual property rights that may arise from applications.

CM165N120L4X100 N-channel Silicon Carbide MOSFET

Due to technical requirements, our products may contain hazardous substances. For details, please contact your nearest sales office. This document replaces all previous information and may be updated. We reserve the right to make changes.