

N-Channel Super Junction MOSFET 800V/7A

Parameter	Value	Unit
V _{DS}	800	V
R _{DS(on)}	0.68	Ω
I _D	7	A

TO-220F

FEATURES

- Ultra low R_{DS(on)}
- Ultra low gate charge (typ. Q_g=17.9nC)
- 100% UIS tested

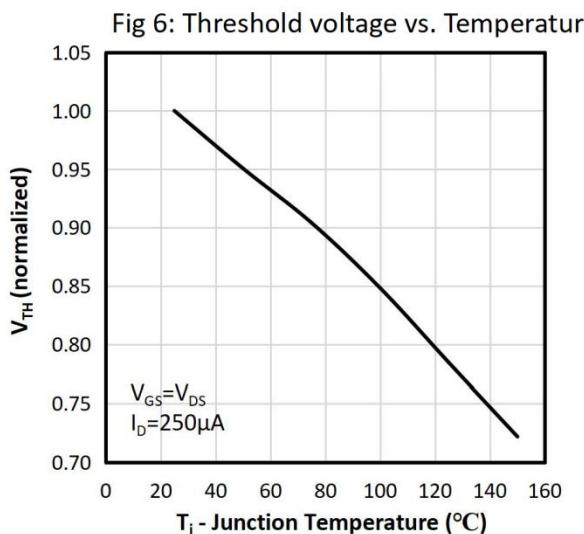
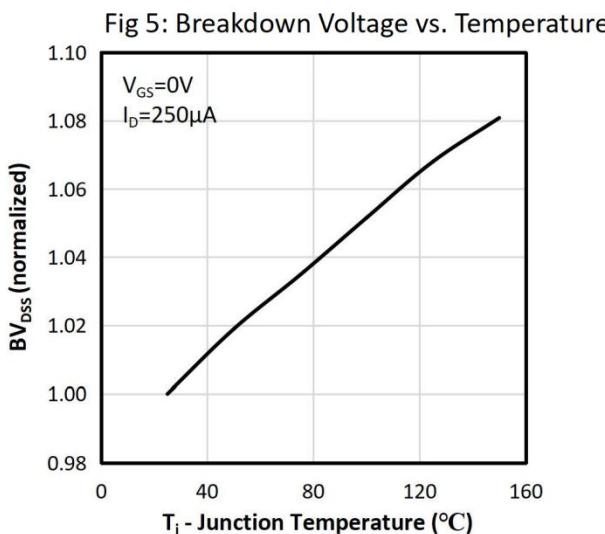
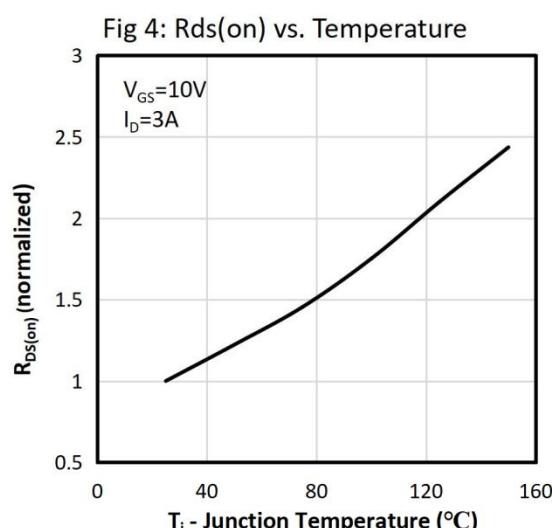
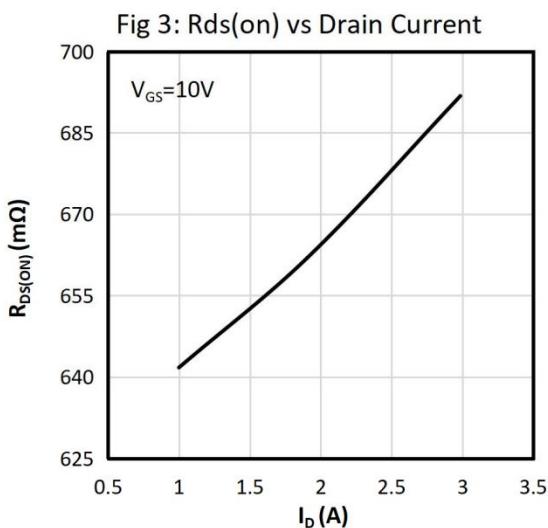
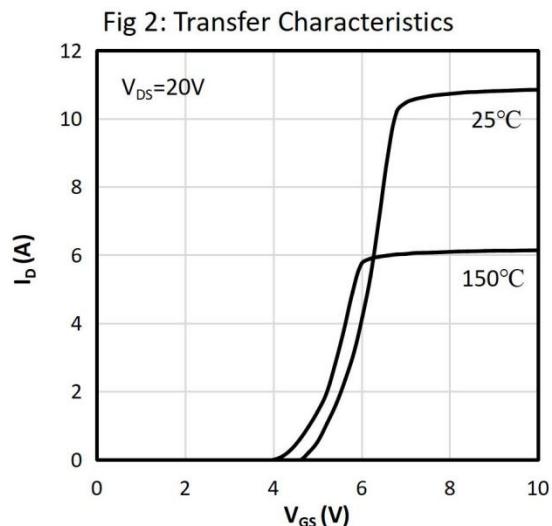
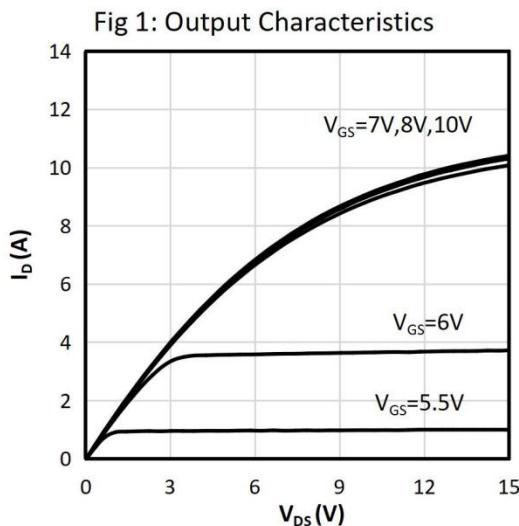
APPLICATIONS

- Power factor correction (PFC)
- Switched mode power supplies (SMPS)
- Uninterruptible power supply (UPS)

MAXIMUM RATED VALUES(at TC=25°C unless otherwise specified)

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	800	V
Continuous drain current ¹⁾ (T _c =25°C) (T _c =100°C)	I _D	7 4.5	A A
Pulsed drain current ²⁾	I _{DM}	21	A
Gate-Source voltage	V _{GSS}	±30	V
Avalanche energy, single pulse ³⁾	E _{AS}	120	mJ
Power Dissipation	P _D	29	W
Operating and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C
Continuous diode forward current	I _S	7	A
Diode pulse current	I _{S,pulse}	21	A

THERMAL CHARACTERISTICS







Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	R _{θJC}	4.3	°C/W
Thermal Resistance, Junction-to-Ambient, minimal Footprint ⁴⁾	R _{θJA}	62	°C/W
Soldering temperature, wave soldering only allowed at leads. (1.6mm from case for 10s)	T _{sold}	260	°C

ELECTRICAL CHARACTERISTICS($T_c = 25^\circ\text{C}$ unless otherwise noted)

Parameter	Symbol	Test Condition	Min.	Typ.	Max.	Unit
Static characteristics						
Drain-source breakdown voltage	V_{BDSS}	$V_{GS}=0\text{V}$, $I_D=250\mu\text{A}$	800	-	-	V
Gate threshold voltage	$V_{GS(\text{th})}$	$V_{DS}=V_{GS}$, $I_D=250\mu\text{A}$	3.0	4.2	5.0	V
Drain cut-off current	I_{DSS}	$V_{DS}=800\text{V}$, $V_{GS}=0\text{ V}$, $T_j=25^\circ\text{C}$	-	-	1	μA
Gate leakage current, Forward	I_{GSSF}	$V_{GS}=30\text{V}$, $V_{DS}=0\text{ V}$	-	-	100	nA
Gate leakage current, Reverse	I_{GSSR}	$V_{GS}=-30\text{V}$, $V_{DS}=0\text{ V}$	-	-	-100	nA
Drain-source on-state resistance	$R_{DS(\text{on})}$	$V_{GS}=10\text{V}$, $I_D=3\text{A}$ $T_j=25^\circ\text{C}$ $T_j=150^\circ\text{C}$	- - -	0.68 1.68	0.9	Ω
Gate resistance	R_G	$f=1\text{ MHz}$, open drain	-	6.09	-	Ω
Dynamic characteristics						
Input capacitance	C_{iss}	$V_{DS}=100\text{V}$, $V_{GS}=0\text{V}$, $f=250\text{kHz}$	-	749.2	-	pF
Output capacitance	C_{oss}		-	24.1	-	
Reverse transfer capacitance	C_{rss}		-	0.7	-	
Turn-on delay time	$t_{d(\text{on})}$	$V_{DD}=400\text{V}$, $I_D=3\text{A}$ $R_G=10\Omega$, $V_{GS}=10\text{V}$	-	44.7	-	ns
Rise time	t_r		-	16.6	-	
Turn-off delay time	$t_{d(\text{off})}$		-	34.2	-	
Fall time	t_f		-	27.1	-	
Gate charge characteristics						
Gate to source charge	Q_{gs}	$V_{DD}=640\text{V}$, $I_D=3\text{A}$, $V_{GS}=0$ to 10 V	-	3.9	-	nC
Gate to drain charge	Q_{gd}		-	8.0	-	
Gate charge total	Q_g		-	17.9	-	
Gate plateau voltage	$V_{plateau}$		-	5.3	-	V
Reverse diode characteristics						
Diode forward voltage	V_{SD}	$V_{GS}=0\text{ V}$, $I_F=3\text{A}$	-	-	1.1	V
Reverse recovery time	t_{rr}	$V_R=400\text{V}$, $I_F=3\text{A}$, $dI/dt=100\text{ A}/\mu\text{s}$	-	255.3	-	ns
Reverse recovery charge	Q_{rr}		-	1789.2	-	nC
Peak reverse recovery current	I_{rrm}		-	15.14	-	A

Notes:

1. Limited by maximum junction temperature and duty cycle. TO-220 equivalent.
2. Limited by maximum junction temperature, maximum duty cycle is 0.75.
3. $I_{AS}=2\text{A}$, $L=60\text{mH}$, $V_{DD}=60\text{V}$, Starting $T_j=25^\circ\text{C}$.
4. The value of R_{thJA} is measured by placing the device in a still air box which is one cubic foot.

CHARACTERISTICS DIAGRAMS

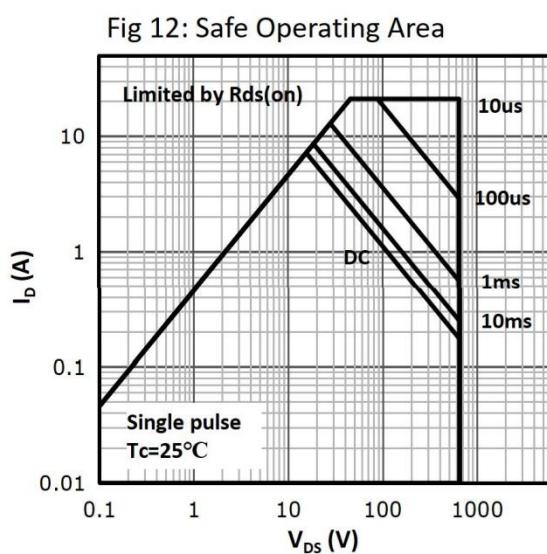
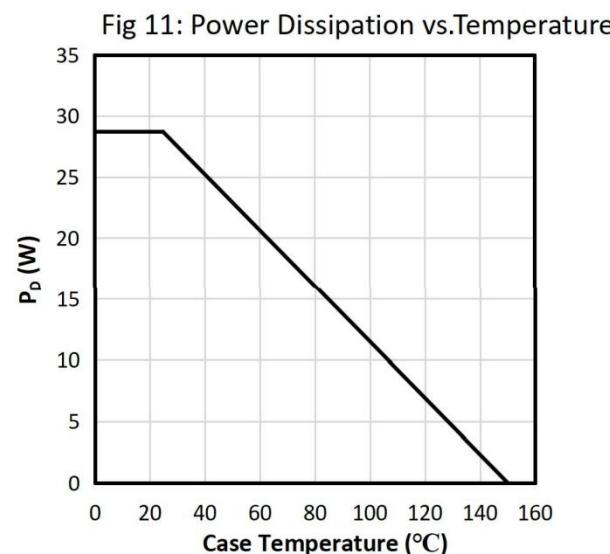
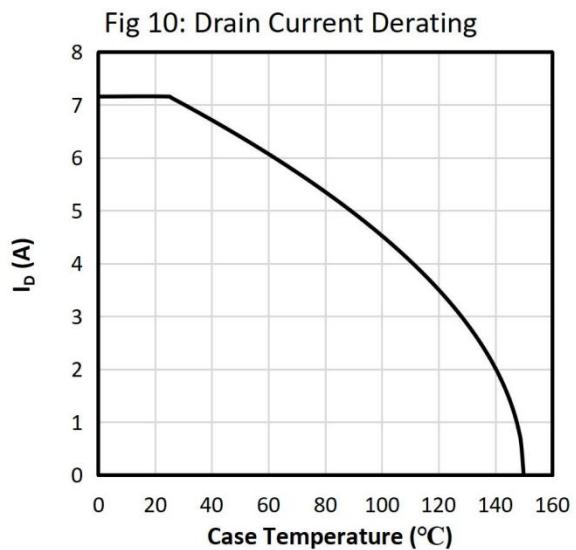
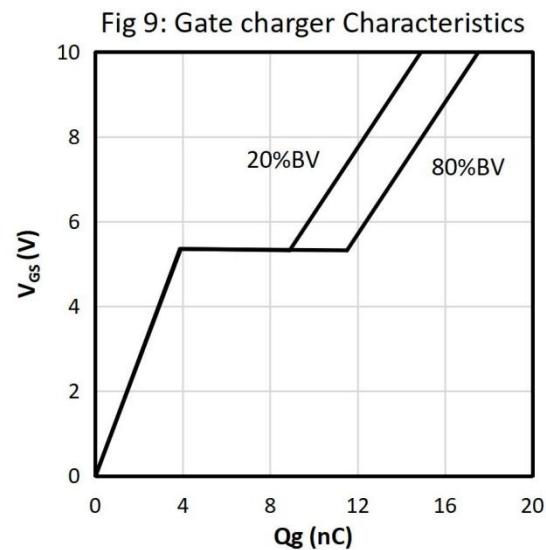
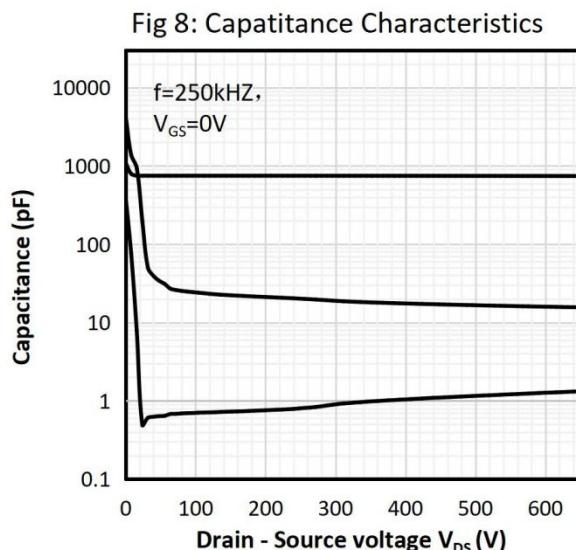
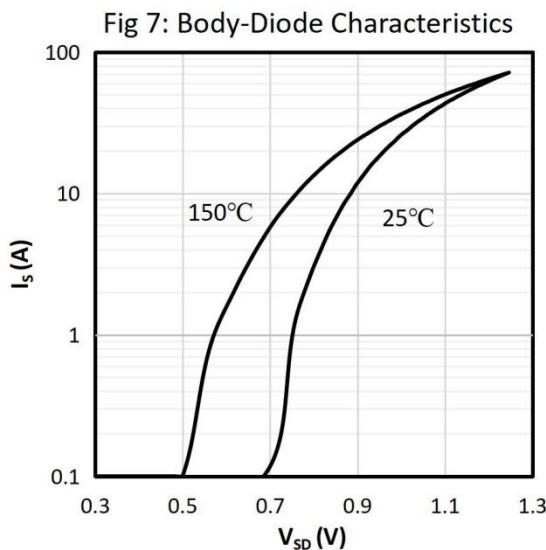
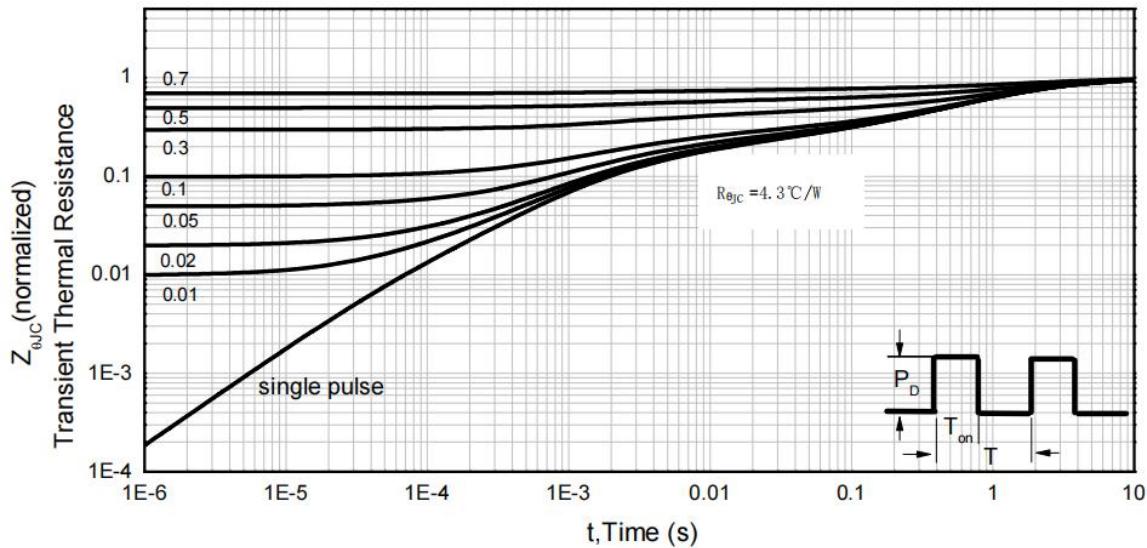
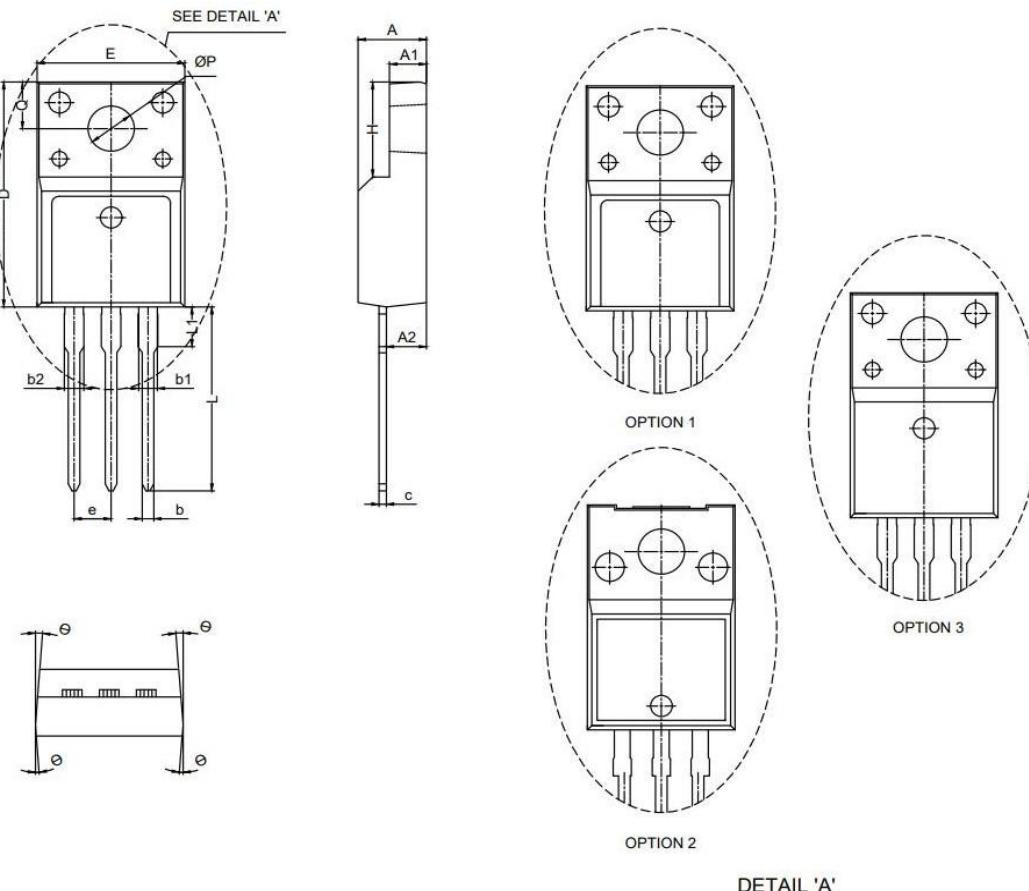









Fig 13: Normalized Maximum Transient Thermal Impedance (R_{thJC})

PACKAGE OUTLINE

SYMBOLS	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.40	4.90	0.173	0.193
A1	2.34	2.74	0.092	0.108
A2	2.50	2.96	0.098	0.117
b	0.70	1.00	0.028	0.039
b1	1.18	1.43	0.046	0.056
b2	1.15	1.58	0.045	0.062
c	0.40	0.70	0.016	0.028
D	15.57	16.40	0.613	0.646
E	9.96	10.40	0.392	0.409
e	2.54 BSC		0.100 BSC	
H	6.48	7.25	0.255	0.285
L	12.64	14.20	0.498	0.559
L1	2.90	3.60	0.114	0.142
ØP	3.00	3.38	0.118	0.133
Q	3.10	3.50	0.122	0.138
Θ	1°	5°	1°	5°

***Important Usage Information and Disclaimer**

The specifications of Zhuhai Hypersemi Co., Ltd. products are not guarantees of product characteristics. They reflect typical performance expected in standard applications, which may vary with specific uses. Users must conduct prior testing for their applications and make necessary adjustments.

Users are responsible for the safety of applications utilizing our products and must implement adequate safety measures to prevent physical injury, fire, or other risks in case of product failure. It is the user's duty to ensure that application designs comply with all applicable laws and standards. Our products must not be used in any applications where a product failure could reasonably result in personal injury, unless specifically authorized in a signed document by Zhuhai Hypersemi Co., Ltd.

No representations or warranties are made regarding the accuracy or completeness of this information, including any claims of non-infringement of third-party intellectual property rights. Zhuhai Hypersemi Co., Ltd. assumes no liability for any applications or uses of its products and does not grant any licenses to its intellectual property rights or those of others. We also make no claims regarding non-infringement of third-party intellectual property rights that may arise from applications.

Due to technical requirements, our products may contain hazardous substances. For details, please contact your nearest sales office. This document replaces all previous information and may be updated. We reserve the right to make changes.